

What you'll learn about

- Slope of a Line
- Point-Slope Form Equation of a Line
- Slope-Intercept Form Equation of a Line
- Graphing Linear Equations in Two Variables
- Parallel and Perpendicular Lines
- Applying Linear Equations in Two Variables

... and why

Linear equations are used extensively in applications involving business and behavioral science.

Copyright © 2011 Pearson, Inc.

CPI DI A

Slope of a Line

The slope of the nonvertical line through the points (x_i, y_i)

and
$$(x_2, y_2)$$
 is $m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_2}$

If the line is vertical, then $x_1 = x_2$ and the slope is undefined.

Copyright © 2011 Pearson, Inc.

Slide P.4 - 4

Example Finding the Slope of a Line

Find the slope of the line containing the points (3, -2) and (0, 1).

Copyright © 2011 Pearson, Inc

Slide P.4 - 5

Example Finding the Slope of a Line

Find the slope of the line containing the points (3, -2) and (0, 1).

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - (-2)}{0 - 3} = \frac{3}{-3} = -1$$

Thus, the slope of the line is -1.

Copyright © 2011 Pearson, Inc.

Slide P.4 - 6

Forms of Equations of Lines

General form: Ax + By + C = 0, A and B not both zero Slope-intercept form: y = mx + bPoint-slope form: $y - y_1 = m(x - x_1)$ Vertical line: x = aHorizontal line: y = b

Graphing with a Graphing Utility
To draw a graph of an equation using a grapher:
Rewrite the equation in the form y = (an expression in x).
Enter the equation into the grapher.
Select an appropriate viewing window.
Press the "graph" key.

Example Finding an Equation of a Parallel Line

Find an equation of a line through (2, -3) that is parallel to 4x + 5y = 10.

Copyright © 2011 Pearson, Inc

lide P.4 - 13

Solution

Find an equation of a line through (2, -3) that is parallel to 4x + 5y = 10.

Find the slope of 4x + 5y = 10.

$$5v = -4x + 10$$

$$y = -\frac{4}{5}x + 2$$
 The slope of this line is $-\frac{4}{5}$.

Use point-slope form:

$$y+3=-\frac{4}{5}(x-2)$$
 so $y=-\frac{4}{5}x-\frac{7}{5}$

Copyright @ 2011 Pearson, Inc.

Slide P4 - 14

Example Finding an Equation of a Perpendicular Line

Find an equation of a line through P(-4,5) that is perpendicular to the line L with equation 2x - y = 1.

Copyright © 2011 Pearson, In

8lide P.4 - 15

Solution

Find an equation of a line through P(-4,5) that is perpendicular to the line L with equation 2x - y = 1.

Find the slope of 2x - y = 1.

$$-y = -2x + 1$$

$$y = 2x - 1$$
 Slope is 2.

Perpendicular slope is $-\frac{1}{2}$. Use point-slope form:

$$y-5 = -\frac{1}{2}(x-(-2))$$
 so $y = -\frac{1}{2}x+3$

Copyright © 2011 Pearson, Inc.

Slide P.4 - 1

Example Finding a Linear Model

American's disposable income in trillions of dollars is given in the table on the next slide.

- (a) Write a linear equation for Americans' disposable income *y* in terms of the year *x* using the points (2002,8) and (2004,8.9).
- **(b)** Use the equation in (a) to estimate Americans' disposable income in 2005.
- (c) Use the equation in (a) to predict Americans' disposable income in 2010.
- (d) Superimpose a graph of the linear equation in (a) on a scatter plot of the data.

Copyright © 2011 Pearson, Inc.

Slide P.4 - 1

Example Finding a Linear Model

Year	Amount							
	(trillions of dollars)							
2002	8							
2003	8.4	•						
2004	8.9							
2005	9.3	:			_			
2006	9.9	:		•	•			
2007	10.4							
	*							

Copyright © 2011 Pearson, Inc.

Slide P.4 - 18

Solution

(a) Let y = mx + b. Find the slope $m \frac{8.9 - 8}{2004 - 2002} = 0.45$

Use (2002, 8) to find b.

$$y = 0.45x + b$$
$$8 = 0.45(2002) + b$$
$$b = 8 - 900.9 = -892.9$$

$$y = 0.45x - 892.9$$

Solution

(b) Find *y* when x = 2005.

$$y = 0.45x - 892.9$$
$$y = 0.45(2005) - 892.9$$
$$y = 9.35$$

So we estimate Americans' disposable income in 2005 to be 9.35 trillion dollars, a little more than the actual amount of 9.3 trillion dollars.

Solution

(c) Find y when x = 2010.

$$y = 0.45x - 892.9$$
$$y = 0.45(2010) - 892.9$$
$$y = 11.6$$

So we predict Americans' disposable income in 2010 to be 11.6 trillion dollars.

Quick Review

Solve for *x*.

1.
$$-50x + 100 = 200$$

2.
$$3(1-2x) + 4(x+2) = 10$$

Solve for *y*.

$$3. 2x - 3y = 5$$

4.
$$2x - 3(x + y) = y$$

5. Simplify the fraction.
$$\frac{7-2}{-10-(-3)}$$

Quick Review Solutions

Solve for x.

1.
$$-50x + 100 = 200$$
 $x = -2$

2.
$$3(1-2x) + 4(x+2) = 10$$
 $x = \frac{1}{2}$

$$3. \ 2x - 3y = 5 \quad y = \frac{2x - 5}{3}$$

4.
$$2x - 3(x + y) = y$$
 $y = \frac{-x}{4}$

4.
$$2x - 3(x + y) = y$$
 $y = \frac{-x}{4}$
5. Simplify the fraction. $\frac{7 - 2}{-10 - (-3)} - \frac{5}{7}$